Fractions

Practice Test 2

Name: \qquad

1. Using a complete English sentence, state the fundamental fact about equivalent fractions (FFEF) .
2. For each given fraction, figure out if it is equivalent to a fraction with 12 in the denominator and then circle either YES or NO accordingly. If you circle YES, then write the equivalent fraction with 12 in the denominator and a whole number in the numerator.
(A)
$\frac{1}{2}$
YES
NO
(B)
$\frac{2}{3}$
YES
NO
(C)

$$
\frac{5}{4}
$$

YES
NO
(D)
$\frac{6}{5} \quad$ YES
NO
(E)
$\frac{7}{6}$
YES
NO
(F)
$\frac{8}{9}$
YES
NO
(G)

$$
\frac{1}{10}
$$

YES
NO
3. First fraction $=\frac{2}{3} \quad$ Second fraction $=\frac{2 \times 4}{3 \times 4}=\frac{8}{12}$

On the number line below, locate both $\frac{2}{3}$ and also $\frac{8}{12}$.

From your work above, what can you conclude about the relationship between the first and second fraction? Complete the blank.

The two fractions are \qquad fractions.
4. For each given fraction, write an equivalent fraction whose denominator is given to you. Fill in the blank with a whole number.
(A)

$$
\frac{3}{2}=\frac{}{8}
$$

(B)

$$
\frac{3}{10}=\frac{}{100}
$$

(C)

$$
\frac{3}{5}=\frac{}{10}
$$

(D)

$$
\frac{1}{6}=\frac{}{12}
$$

5. Circle ALL fractions that are equal to $\frac{2}{5}$.
$\frac{1}{2} \quad \frac{4}{10} \quad \frac{8}{20} \quad \frac{6}{9} \quad \frac{20}{50} \quad \frac{12}{15}$
6. Add the fractions. Show all steps. Use equal signs as discussed in class.
(A) $\frac{3}{10}+\frac{4}{100}$
(B) $\frac{39}{100}+\frac{3}{10}+\frac{1}{100}$
(C) $\frac{2}{10}+\frac{7}{10}+\frac{3}{100}$
7. (a) Express the following improper fraction as a mixed number.

$$
\frac{25}{4}
$$

(b) Between which two consecutive whole numbers does the given improper fraction lie? Fill in the blanks with the correct whole numbers. Hint: use your work from part a) above.

$$
<\frac{25}{4}<
$$

(c) Now, find an approximate location for the mixed number on the number line. A line with tick marks has been provided for you for convenience.

8. Vanessa measured out $3 \frac{2}{3}$ cups of juice into a bowl. She then added to it another $4 \frac{2}{3}$ cups.

How many total cups of juice are now in the bowl?
9. Kevin has a container that contains $13 \frac{1}{8}$ cups of water.

He uses $2 \frac{3}{8}$ cups from the container to water his plants. How much water is remaining in the container?
10. Arrange the numbers in increasing order.

$$
\frac{3}{10}, \quad \frac{36}{100}, \quad \frac{1}{100}, \quad 50, \quad \frac{1}{10}, \quad 1, \quad 2 \frac{1}{100}, \quad 2 \frac{1}{10}
$$

11. Circle ALL expressions that are greater than 1.
$13 \times \frac{1}{10}$
$5 \times \frac{2}{11}$
$6 \times \frac{2}{9}$
$3 \times \frac{5}{12}$
12. Circle ALL expressions that are equal to $4 \times \frac{5}{3}$.
$20 \times \frac{1}{3}$
$2 \times \frac{10}{3}$
$3 \times \frac{5}{4}$
$5 \times \frac{1}{12}$
$5 \times \frac{1}{20}$
13. There are 5 bags of chips in a basket. Each bag weighs $5 \frac{1}{3}$ oz. Find the total weight of 5 bags.
14. There are 8 bottles of milk on the table. Each bottle contains $\frac{3}{5}$ liter of milk. Find the total amount of milk in the 8 bottles.
15. Express each decimal fraction as a finite decimal.
$\frac{507}{10}=\quad \frac{507}{100}=\quad \frac{2}{100}=\quad \frac{2}{10}=$
16. Express each finite decimal as a decimal fraction.
$3.9=$
$0.86=$
$2.07=$
$41.09=$
$0.63=$
$0.1=$
17. Compare each pair of numbers by placing $<$ or $=$ or $>\operatorname{sign}$ between them.
(A)
$\frac{7}{10}$
$\frac{17}{100}$
(B)
$\frac{3}{5}$
$\frac{5}{10}$
(C)
1
(D)
$\begin{array}{ccc}\text { (E) } & 0.98 & 1 \\ \text { (F) } & 0.6 & 1.6\end{array}$
